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Abstract. We present a general theoretical investigation of three-wave interactions by the 
method of nonlinear perturbation, with special emphasis on nonlinear explosive instabilities 
in the presence of linear damping or growth. 

1. Introduction 

There is a growing interest in the possibility of unbounded solutions to the equations of 
nonlinear interactions in plasma. The corresponding explosive instabilities may cause 
some astrophysical phenomena (Sturrock 1966) as well as enhanced losses in laboratory 
plasma (Kadomtsev et a1 1965, Dikasov et a1 1965, Coppi et a1 1969). The effects of 
phase are of considerable importance in nonlinear wave interactions in plasma 
(Engelmann and Wilhelmsson 1969), and the coupled equations for three-wave 
nonlinear equations can be integrated analytically when the coupling cons!ants are 
real. However, in the general case of an explosive instability where one takes the 
coupling coefficients to be complex, with phases not equal to 0, T, the problem becomes 
considerably more complicated (Wilhelmsson and Stenflo 1970). It has been pointed 
out that in the nonlinear perturbation developed by Coffey and Ford (1969) and others, 
Case (1966) has the distinct advantage of separating a given motion into a secular 
motion plus a rapidly fluctuating motion of small amplitude. In the present paper we 
discuss, within the framework of nonlinear perturbation theory, how a nonlinear 
three-wave interaction becomes explosive in the presence of linear damping of the 
waves. We note that the explosive instability studied by the well-defined phase 
approach is a first-order phenomenon in the order of nonlinear perturbation, and 
explosive instability may be developed to higher orders. 

2. A brief review of the perturbation method 

Coffey and Ford (1969) have presented a form of the method of averaging called the 
method of rapidly rotating phase. We consider the following set of coupled differential 
equations : 

( l a )  

(1b) 

dxildt = €Ai(X, 'P), 

d$j/dt = wj(X)  + €Bj(X, 'P), 

x = ( x * ,  x 2 ,  - . * XY), 

'P =(*I, $ 2 ,  * . * *s), 

i = 1 , 2 , .  . . y, 

j = 1,2 ,  . . . s, 
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where E is a small parameter and X ,  Y and the Ai's and Bi's are periodic functions of the 
&'s with period 27r. When E = 0, the x,'s are constant and the 4j's are linear functions 
of time. 

When E is small the xi's will experience a slow secular growth with a small-amplitude 
rapid fluctuation superimposed on it. Similarly the $j's will experience a rapid secular 
growth on which is superimposed a small-amplitude rapid fluctuation. The method is 
utilised to separate this secular motion from the rapidly fluctuating motion. To do this 
we seek a solution of the form 

m 
xi = yi + E n F I n '  (&), i = 1 , 2 ,  . . .  y, 

n = l  

oc 
$1~=4,+ E ' G " ' ) ( ~ ) ,  j =  1 , 2 , .  . . s, 

n = l  

where Fin' and G;") are periodic functions of each of the 4 k ,  with period 27r. 
We further require that yI  and should satisfy the following differential equations: 

m 

dyi/dt = c E"a;"'(y), i = 1 , 2 ,  . . . y, 
n = l  

m 

wj (y )+  C Enbin)(y), j =  1, 2 , .  . . s, 
n = l  

d4jldt  = 

(3) 

where the right-hand sides of equations (3) are required to be independent of the 4 k ' S  
and the yi's and dj's describe only secular motions since they are solutions of a system of 
differential equations which are independent of the rapidly changing phases q5fi The 
rapid fluctuations of xi and (CI, about yi and cpj are given by the terms in the series in 
equation ( 2 ) .  We shall illustrate the working of the general method in the general 
system of three interacting waves in the presence of dissipation. 

3. Basic coupled mode equations 

A unified description of the nonlinear interaction of the waves can be made by the 
system of equations 

* aao/at -iwoao = c12ala2, 

aa l /a t - iw la l  = co2aoa:, 

aa2/dt - iw2a2 = colaoa 1 .  
* 

Following Wilhelmsson and Stenflo (1970) we can write 

(4) 
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We obtain the real system 

Using further renormalisations, 

CO+ (uo1U02)1’2u0, C l  + (u01U12)1’2u1, i 2  + (oo2u12)1’2u2, 

we obtain 

One may have explosively unstable solutions to equation ( 7 a )  when both ampli- 
tudes on the right-hand side of equation ( 7 a )  grow. This is possible only if all three 
amplitudes grow at the same time. In the next sections we shall discuss how the 
nonlinear three-wave interactions become explosive in the presence of linear damping 
arid dissipation. 

4. Effect of linear damping and dissipation on explosive instabilities of three 
interacting waves 

To solve the set of equations ( 7 a )  and ( 7 b )  we find that the method of perturbation due 
to Coffey and Ford (1969) is the most suitable when Aw # 0, although it has limitations 
when Aw = 0. 

Following Coffey and Ford (1969) we seek a solution in the form 

where 

The u:o) term in equation ( 9 b )  appears because of the presence of the term with 
coefficient vi in equation (7a) .  Inserting equation ( 8 )  in equation ( 7 ) ,  using equation ( 9 )  



1446 T P K h a n ,  R K Roychowdhury,  S De and T R o y  

From the next power of E we obtain 

= - Y ~ Y ~ G ‘ ~ ’ ( ~ )  sin(4 + eO2) + (yzF?’ + yoFY’) cos(4 + eo& 

where 

tan vi = vi/Awi, l / A q  = (U; +Aw’)-~/’. 
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One can obtain from equations (1 1) 

YlYzL s i n ( ~ o l - ~ 0 2 + ~ 2 ) + - s i n ( e 1 2 - e 0 2 + ~ 0 j  
2Aw2 2Awo 

- Y 1 Y 6  

, 

Y 2 Y :  
2 

sin(Oo2 - Bol + 771) +- sin(O12 - eol + qo j  ( 2 )  - Y 2 Y o  a2  -- 
2 h 1  2 8 ~ 0  
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cos(e12 - 
2 COd601- 012 + 772) + cos(812 - 801 + 770) + 

- Y 1 (  2 A ~ 2  ~ A W O  A# 

4.1. The dissipation-free case 

For the dissipation-free case the angles O,, will either be the same (explosively unstable 
case) or differ by r (stable case). When all 8,, are the same and we assume further that 
vO = vl = Y and v2 = 0, then from equations ( 9 b )  and equations ( 1 3 a )  we obtain 

to obtain 



Explosive instabilities in nonlinear perturbation 1449 

Equations (14b) and (14c) can be integrated to obtain 

x2 = ~ ( p +  + p- eApi)/(p+- p- eApt), 
xO=xl=A e(pA-l)t /(p+-p-e API  ) I /AP , 

where p* = x2(0) * P, P = x2(0) - xl(0) -xo(Q) and A is a constant. All xi will go to 
infinity and the time of explosion will be 

1 PL+. t --log--. 
m-AP p- 

If we choose the initial amplitudes such that P = 0 we obtain the simplest possible form 

and thus the time of explosion too = l/Ax2 (0). In the presence of damping A < 1, which 
shows that the time of explosion will be delayed. In an exactly similar manner one can 
obtain that the xi have a stable solution when the Oij differ by T. 

4.2. Infiuence of dissipation when Oii are present 

Using (12a) the differential equation (9a)  becomes, to second order in E with x, = y f ,  

dxo 2 1 .  1 -+ 2v0x0 = E xoxl - ~ i n ( t 9 ~ ~  - eI2 + qZ) +- sin(Ool - OI2) 
dt [ (Aw2 Aw 

dt [ (Aw2 Aw 

dt  [ ( A w l  Am 

1 1 
+xOx2 (z sin(eo2 - e12 + ql) +- sin(eo2 - e12) 

+x1xz (G sin(e12 - eo2 + To) +-- sin(e12 - eo2) 

A& 

dx 1 2 1 1 --+ 2vlxl = E xoxl - sin(Ool - eo2 + q2)  +- sin(eol - eo2) 

1 1 
A& 

dxz 2 1 1 --+ 2~2x2 = E x0x2 - sin(lilo2 - eol + ql) +- sin(eo2 - cor) 

+x1x2 (- sin(e12 - oOl + q0) +- sin(elz - col))] . 1 1 
Awo AU 

Assuming all vj are the same, we have qo = 71 = q 2  = 7, also assuming Aw >> Y, and q 
much less than the difference of the Oii. One can derive the following constants of 
motion from equation ( 1 5 ~ ) :  

d - (log xo + log XI+ log x*) = 0, 
d r  

d 
- Exo sin(Ool - eo2) + x l  sin(& - Boll  +x2  sin(Oo2 - e12)] = 0 ,  d r  

(15b) 

(15c) 

where 

T = (1 -e-’”‘)/2v. 2vt  xi =x, e , 
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Equations (15a) can be called the generalised Volterra equations (Hirota 1976). It is 
interesting to note that the constants of motion (15b) are very similar to the condition of 
equilibrium obtained from the entropy function (Dikasov et a1 1965) and that equation 
(15c) is identical to that of Wilhelmsson and Stenflo (1970). 

The method of nonlinear perturbation (Coffey and Ford 1969) does not in general 
lead to an explicit solution of the original set of equations. It is a method very suitable 
for separation of the secular motion from the rapid periodic fluctuation and for reducing 
the problem to that of solving the differential equations for secular motion alone. We 
proceed to solve the differential equations for secular motion (equations (9a) and (9b)) 
for different orders of perturbation. We write 

Equations (16) are in general elliptic integrals and the solution can be expressed in 
terms of elliptic functions, depending on whether the solution of ~ ( x , )  = 0 has either 
four real roots or two real and two complex roots (Weiland and Wilhelmsson 1977). We 
notice that the solution of ~ ( x , )  = 0 ( ~ ( x , )  stands for the denominator of equation (16)) 
has (a) two real roots and two complex roots when OO2 > O I 2  > dol;  (b) four real roots 
when any two of three OIi are equal. 

The significant change one can note is that ~ ( x , )  is in general biquadratic, while in 
the dissipation-free case in the absence of linear damping it is cubic. The general 
solution has been discussed in the Appendix. 

For simplicity let us take the initial values of x, and O,, such that when P = 0 all the 
T ( x , )  of equations (16) have two real and two complex roots. The integrals of equations 
(16) can be written in the form (see Appendix) 

(17a) 
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with 

fj + giui f;=-- (Ji + 1) ( v 5  - 1) 
& = -2 “ j 9  

Qi, xi =- 1 + u j  ’ 

a, = (sin t,b1)-’(4Q sin +bo sin t,bl sin $2)1’3, 

t,bO = eOl - 602,  

m, = -(J3 + 2)-2 = -Cot2 e. 

j = 0, 1 ,2 ,  

$l = e12- eol, t,b2 = e02 - e12, 
n, = 1, A, =(3J?/4)(u;(./J+2), 

- 

Then equations (16) reduce to 

Integrating equation (IS) (Abramowitz and Stegun 1965) one obtains 

(where sd is Jacobi’s elliptic function) where T, is defined as 

&-h sin \ 
T z- 

’ v’xi  [ ( 2 e 2 / h w )  sin $,I 
When u, (T)  = -1, x,  tends to infinity and one can obtain from equation (19) the time of 
explosion given by 

JA, 2 e 2  
sin 19 sd [ - (-.I sin t,bj) cosec O(,r + q)l sin2 8 

t3-h Aw 

When, in addition to P = 0, the initial conditions of xj(0) and Oi j  are such that the ~ ~ ( 0 )  
are given by u j (0 )  = sin(8 + T )  sd(l1 sin’ e) with 1 a constant, all the xi will grow to 
infinity at the same time and the time of explosion will be obtained as 

hw 
T~ = 3-”4 -[[I-sd-’(cosec 81 sin2 e)]. 

2E2 

5. Discussion 

In this section we discuss some current literature on explosive instabilities (see Fukai et 
a1 (1970, 1971), Aamodt and Sloan (1967, 1968)) relevant to our present work. They 
have investigated this phenomenon by deriving the equations for the time evolution of 
the complex wave amplitude, retaining only the second-order nonlinear interaction 
term. In an attempt to obtain more physically acceptable results, several authors (Fukai 
et a1 (1970), Dysthe (1970), Oraevskii et a1 (1973a, b), Weiland and Wilhelmsson 
(1977)) retained the third-order nonlinear terms in the equations for the complex 
amplitudes to obtain new coupled mode equations which in particular cases were 
amenable to analysis. 

The insufficiency of the first-order approximation for a resonant wave interaction 
and in a multistream plasma has been well discussed by Sedlacek (1975a, b, 1976), who 
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used the theory of nearly multiple periodic Hamiltonian systems (Coffey 1969, 
Sedlacek 1975a, b). 

In our paper we have used the nonlinear perturbation technique developed by 
Coffey and Ford (1969) to separate the fast oscillations from the slow evolution of the 
whole system. This is a significant advantage over the time-averaging scheme of 
Bogolyubov and Krylov and Mitropolski, and over the method of averaged Lagrangians 
as elaborated by Dougherty (1970) and applied by Galloway and Kim (1971) and Boyd 
and Turner (1972, 1973). 

Another main advantage of our method lies in the fact that analysis of the explosive 
and stabilised nature of three-wave interactions is possible from the explicit solutions of 
the secular motion. 

It is interesting to note that the nonlinear coupled mode equation (equation (7)) is 
reproduced from the first-order equation (equation (10)) of our analysis when all F and 
G are taken to be zero. Because of this coincidence, one may conclude that our 
first-order approximation is exactly equivalent to the usual time-averaging scheme. 

A new set of constants of motion is obtained in the second-order approximation. If 
one wishes, one can study the character of motion by the phase plane analysis (Minorsky 
1962). In such a description, when a curve is drawn with the amplitude as independent 
variable and the amplitude derivative as dependent variable (see equation (15a)j, one 
obtains the phase portraits of explosive instability. Again the effect of inclusion of the 
phases e,, and AOJ may introduce a large negative root of ~ ( x , )  = 0 (equation (16)). In 
such cases, in the second-order approximation, the motion will be stabilised. The 
significant influence of the third-order nonlinear term, having a similar effect, has been 
discussed by Weiland and Wilhelmsson (1977) and Byers et a1 (1971). 

In our analysis, it has been shown how in the second-order approximation the 
explosive character of three-wave nonlinear interactions is greatly influenced by the 
presence of linear damping and dissipation. The same order of nonlinearity that causes 
explosive instability in the first-order approximation may stabilise the waves in the 
second-order approximation. 
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Appendix 

An integral of the form 5 dz/(v(z))’” can be expressed in terms of an elliptic integral 
when T ( Z )  can be written as 

where p ,  q, r, s are real. In the transformation z = ( f+gu) / ( l  + U )  let f, g, be so chosen 
that the coefficient of U in each quadratic is zero; then ~ ( z )  will take the form 
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with 

g 2  + rg + s 
f 2 + P f  + q  ’ f 2 + r f + s  ’ m = -- g2+pg+4 n =  

Now let the two equations 

r 2 + p z + q = 0  and z 2 + r z + s = 0  

have roots xl ,  x2 and x3, x4 respectively so that 

X ’  +xz = -p ,  X l X Z  = 4, 

x3 + x4 = -r, x3x4 = s. 

Further, j and g are the roots of the equation 

( r  - p ) f 2  + 2(s - q ) f  + ( p s  - qr ) = 0. 

Accordingly the roots will be real when 

(s - 4)’ - ( r  - p ) (  ps  - qr) > 0.  (A51 

(x1 -x3)(x1 -x4)(xZ-X3)(xZ -x4) 0. (A6) 

The inequality can be written as 

This inequality holds when at least one of equations (A4) has imaginary roots. If both 
equations have two real roots the factors of ~ ( z )  can always be written so that 
X I >  x2>xg>x4.  

Thus the inequality holds in this case also. Then the integral can be reduced to an 
elliptic integral (Abramowitz and Stegun 1965): 
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